MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/21 Paper 21, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2010	4024	21

Section A

Qu	Answers	Mark	Comments
1	(a) $f(7)=1$ as final answer (b) $\frac{t-2}{5}=t$ $t=-\frac{1}{2}$ (c) Attempt to make x the subject $\mathrm{f}^{-1}(x)=5 x+2$	B1 M1 A1 M1 A1 [5]	Forms an equation in t and attempts to solve SC 1 for $(x=) 5 y+2$
2	(a) $\frac{66-48}{48}(\times 100)$ 37.5\% (b) 130% oe soi $\frac{19.5}{1.3}$ о.e (\$)15 (c) (i) $\$ 88$ (ii) $\$ 79.20$ \$2.8(0) cao	M1 A1 M1 M1 A1 B1 B1 $\sqrt{ } \mathrm{ft}$ B1 $\quad[8]$	Accept -2.8
3	(a) Rectangle 13 cm by 8 cm (b) (i) Constructs perpendicular bisector of $Z Y$ Arc of circle radius 9 centre X (ii) Labels the correct region (c) (i) P and Q correctly positioned (ii) (a) $42 \pm 1 \mathrm{~m}$ cao (b) $107^{\circ}\left(\pm 2^{\circ}\right) \mathrm{cao}$	$\begin{aligned} & \text { B1 } \\ & \text { B1ft } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	to cross rectangle across rectangle No need to shade - but must be correct Dep on correct P and Q

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2010	4024	21

4	(a) $\frac{4(2 x-1)-3(x+3)}{(x+3)(2 x-1)}$ $\frac{8 x-4-3 x-9}{(x+3)(2 x-1)}$ $\frac{5 x-13}{(x+3)(2 x-1)}$ oe as final answer (b) Squares both sides of the equation $m=\frac{k^{2}-3 n}{2 l}$ as final answer (c) For num $\frac{p \pm \sqrt{q}}{r}$ $\begin{aligned} & p=4 \text { and } r=6 \\ & q=208 \text { or } \sqrt{q}=14.4 \ldots \\ & x=3.07, \\ & x=-1.74 \text { Final answers } \end{aligned}$	M1 A1 M1 A1 B1 B1 B1 B1 [9]	Single fraction. Brackets not essential. Multiplies the first fraction by $(2 x-1)$ and the second fraction by $(x+3)$ Multiplies out the numerator with at least 1 pair of terms correct s.o.i. or used SC1 for both 3.0 to 3.1 and -1.7 to -1.74 seen
5	(a) (i) $\begin{aligned} & p=0.5, q=0.2 \\ & r=0.3 \end{aligned}$ (ii) (a) 0.25 (b) 0.5×0.2 seen (b) (i) 17 (ii) $78-54$ soi $x=8$	B1 B1 B1 M1 A1 B1 M1 A1 [8]	Can be implied by $x+2 x+54=78$
6	(a) Either 136° or 44° correct Other one correct (b) $\begin{aligned} & A \widehat{B} C=68^{\circ}, B \hat{A} C=44^{\circ} \text { and } \\ & B \bar{C} A=68^{\circ} \\ & \text { Isosceles triangle } \end{aligned}$	B2 B1ft B1 B1 [5]	After B0, allow SC 1 for $A \widehat{C} O=22^{\circ}, A \widehat{B} C=68^{\circ}$, $A \widehat{E} C=68^{\circ}$ or for sum $=180^{\circ}$. Dep

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2010	4024	21

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2010	4024	21

Section B

Qu	Answers	Mark	Comments
8	(a) $p=-2.6$ stated (b) Scales Five points plotted ft Smooth curve (c) $x=2.55$ to 2.65 (d) (i) $y=x$ (ii) Line drawn and attempt to read at intersect $x=2.4(0)$ to $2.5(0)$ (e) -4 (f) (i) Correct line drawn (ii) $(0,12)$ (iii) $y=-4 x+12$	B1 S1 P1ft C1 X1 L1 M1 A1 G1 T1 Y1ft E1ft[12]	Lost for ruled lines, incomplete, very thick Tangent of gradient part (e) ft from their attempted tangent ft from their gradient and their intercept
9	(a) (i) $\begin{aligned} & \frac{90}{360} \times \pi \times 16 \\ & +16 \\ & 28.56 \text { to } 28.6(0) \mathrm{cm} \end{aligned}$ (ii) $\frac{90}{360} \times \pi \times 8^{2}$ [Their $\left.\frac{90}{360} \times \pi \times 8^{2}\right] \times h$ $=800$ soi $h=15.9(0)$ to 15.92 cm (b) (i) (a) $M N=2 x$ (b) Area of triangle $=$ $\frac{1}{2}$ their $(2 x \times x)$ Area of sector $=16 \pi$ and Subtraction (ii) $\begin{aligned} & 20\left(16 \pi-x^{2}\right)=800 \\ & x^{2}=10.2 \ldots \text { to } 10.3 \\ & x=3.2(0) \text { to } 3.21 \mathrm{~cm} \end{aligned}$	A1 B1 M1 A1 M1 A1 A1 [12]	Correct formula and 90° used Indep. Attempt to add $2 \times$ radius Area of cross-section Indep. Forms equation Expect justification and a subtraction Forms equation Correct method of solution

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2010	4024	21

10	(a) (i) 140° (ii) $\frac{6 \times 180-4 \times 140}{4}$ or $3 \times 180-410$ or $180-50$ oe 130° (b) (i) $\tan 40^{\circ}=\frac{C T}{23}$ oe $C T=19.29$ to $19.3(0) \mathrm{cm}$ (ii) 73×39.3 or 50×39.3 $\frac{1}{2} \times 23 \times($ their $C T)$ or $\frac{1}{2}(20+20+$ their $C T) \times 23$ 2640 to $2650 \mathrm{~cm}^{2}$ (iii) 10560 to 10600 (iv) (a) 146 cm 79 cm (b) 930 to $980 \mathrm{~cm}^{2}$ cao	B1 M1 A1 M1 A1 M1 M1 A1 B1ft B1 B1ft B1 [12]	Correct method leading to solution Accept $20+$ their $C T$ for 39.3 $4 \times$ their (b)(ii) $40+2 \times$ their $(\mathbf{b})(\mathbf{i})$ rounded up
11	(a) (i) $\binom{6}{-5}$ (ii) Enlargement Scale factor $\frac{1}{2}$ Centre (4, 1) (iii) Shear (iv) $\begin{aligned} & y=x(+c) \\ & y=x+1 \end{aligned}$ (b) (i) x-coordinate $-q$ y-coordinate $-p$ (ii) x-coordinate q y-coordinate $-p$ (iii) $\mathbf{W}=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$	B1 M1 A1 A1 B1 M1 A1 B1 B1 B1 B1 B1 [12]	Accept ${ }_{-5}^{6}$ but not $6,-5$ or $(6,-5)$ A1 and A1 not lost if transformation stated, when SC1 SC1 scored Knowing the equation has gradient 1 SC1 for $\binom{-q}{-p}$ SC 1 for $\binom{q}{-p}$

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May/June 2010	4024	21

(a) (i) $\mathbf{p}-\mathbf{q}$
(ii) $\frac{1}{2}(\mathbf{p}-\mathbf{q})+\frac{1}{4} \mathbf{p}$
$\frac{3}{4} \mathbf{p}-\frac{1}{2} \mathbf{q}$ cao
(b) (i) (a) $\frac{1}{2} \times 24 \times 17 \times \sin 55^{\circ}$ 167 to $167.5 \mathrm{~cm}^{2}$
(b) Attempt at cosine rule $X Y^{2}=865-816 \cos 55$ 19.9 to 19.93 (cm)
(ii) (a) $V Z^{2}=15^{2}-6^{2}$ $V Z=13.7$ to 13.75 cm
(b) $766 \mathrm{~cm}^{3}$ (Accept $762-766$)

B1

Correct method

Correct formula and sign and correct algebra soi SC1 for 396 to 397 seen

Value of 6 and correct use of Pythagoras
$\mathrm{ft} \frac{1}{3} \times$ their $(\mathbf{b})(\mathbf{i})(\mathbf{a}) \times$ their $(\mathbf{b})(\mathbf{i i})(\mathbf{a})$

